
Journal of Engineering, Science and Mathematics

Volume 01, Number 01, Pages 7-11, Year 2020
https://jesm.in/archives/

Review Paper

A Comprehensive review on Software Development Life Cycle

Gargi Kalia1

Department of Computer Science Engineering, Universal Group of Institutions, India

Correspondence should be addressed to Gargi Kalia; gargikalia6@gmail.com

Received 02-12-2020; Accept 21-12-2020; Published 24-12-2020

Handling Editor: Sparsh Sharma

Copyright © 2020 Gargi Kalia. This is an open access article distributed under the

Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

Software Engineering is a branch of computer science which deals with software

production. Software engineers develops different kinds of software’s and provide proof

to validate these results. This paper basically gives a review of software development

life cycle. It gives a detailed insight of all the models used in software engineering such

as Classical waterfall model, Spiral model, Prototype model, Big-Bang model,

Incremental model, Agile model and V-Shaped model. Software Development Life

Cycle (SDLC) is a procedure used for designing, developing and testing software’s.

SDLC helps in providing best quality software’s which meets customer’s expectations

and it ensures the timely delivery of the project.

Keywords: Software Development Life Cycle, Software Engineering, Incremental Model,

Waterfall Model, Prototype Model, Spiral Model, Big-Bang Model, Agile Model, V-

Shaped Model

1. Introduction

Software is a collection of routines or

subroutines which tell the computer how to

work. Software is fuelling the modern era.

Software consists of set of procedures,

routines or subroutines which is linked with

the operations used in computer system.

Software Engineering deals with the

applications which are implemented with

the help of science and technology [1]. It

also explains the software approach

development, operation and maintenance of

software [2]. It interacts with the

engineering branch which is concerned

with all particulars of software

development [3]. It is an engineering

https://jesm.in/archives/

discipline which establish the engineering

principles so that one can obtain a reliable

software which works efficiently [4]. It is a

branch of computer science which helps to

design, implement and maintain complex

computer programs [5]. Software

Engineering helps in activities used in

computer programming and system

analysis [6]. Software Engineering also

deals in field of computer programming [7].

It can be considered as the term which is

used to defend the codification of

recommended practices used in engineering

disciplines [8].

2. Software Development Life

Cycle

Software industries utilize SDLC to design,

develop and test excellent quality software.

The main aim of SDLC is to build software

which are of excellent quality. It builds a

software which meets the customer’s

expectations and completes on time and

within given cost estimates.

2.1 Software Development Life Cycle

Models

Another name for SDLC is Application

Development Life Cycle. SDLC has

different phases such as Requirement

gathering and analysis phase, Feasibility

study, Designing, Coding phase, Testing

phase, Deployment phase and then

Maintenance phase.

Software Development Life Cycle has

various models such as:

• Classical Waterfall Model

• Incremental Model

• Spiral Model

• Big-Bang Model

• Agile Model

• Prototype Model

• V-Shaped Model

• Spiral Model

• Big-Bang Model

• Agile Model

2.2 Classical Waterfall Model

Classical Waterfall Model is easily

understandable and manageable. In this

model, one phase reaches completion, after

that second phase gets started. One cannot

come back to the previous phase. Each

phase depends on the information received

from previous stage and has its own project

plans. Waterfall model is oldest model. It is

a straight forward model. In this model, the

flow direction is from top to bottom.

Waterfall Model is firstly introduced by

Winston W. Royce in his article in

year1970 [9]. He did not use the term

“waterfall” in his paper. He elaborated that

model as a pattern which is not working

[10]. The term “Waterfall” in introduced in

an article in 1976 [11].

2.3 Incremental Model

The incremental model is also known as

Iterative model. This model implements

Waterfall model incrementally [12]. It

combines the waterfall model with the

iterative theories. In this model, after each

phase a new version of software is

produced. This process repeat itself, until

the complete product is delivered. The

sequence of releases is known as

“increments”. With each increment, a bit

more is added each time. This process

repeats itself until the software reaches its

completion. With each increment, new

functionality is added to the product. It

depends on the customer’s feedback.

Planning is done for the next increments

and moderations are performed

accordingly. A new version of software is

developed with every iteration. The

iterative model applies the waterfall model

repeatedly until the final product is

delivered [13]. The iterative or incremental

philosophy is also applying in agile

modelling. This model has one

disadvantage that resources gets exhausted

by repeating the process over and over

again.

2.4 Prototype Model

In Prototype model, a prototype or dummy

of a product is built and tested. This process

continues until expected results are

achieved. One can have in prospect that

individual sample or prototype costs will be

high as compared to the final product due to

the inefficiencies in processes. Protypes are

helpful for reducing costs by optimizing

and refining the prototype accordingly [14].

A running prototype of a software is

produced before deployment of actual

software. Firstly, requirements are gathered

in prototype model and then analysis is

performed. After that quick decision is

being made. Protype is constructed and then

assessment of that prototype is performed

whether it has been built correctly or not.

Later, user evaluates whether the protype is

built as per the desired results or not. If not,

then refinements of that prototype are

performed.

2.5 Spiral Model

Spiral model is a model which is used to

mitigate risk factor. Spiral model guides to

use components of waterfall, incremental or

prototype model. Spiral model is the most

flexible model among other models. In this

model, the project deals with four phases

again and again until final completion is

achieved. It considers multiple rounds for

refinement. Spiral model works in four

steps: (i) Determine objectives (ii) Identify

and Resolve risk (iii) Development and

Test (iv) Plan the next iteration. This model

was firstly introduced by Barry Boehm in

his article in 1985 [15].

2.6 Big-Bang Model

The Big Bang model do not follow any

particular process. This model requires very

less/no planning. This model is used for

small projects and requires very small

development team of around one or two

software engineers. This model is not used

for complex projects. Risk factor is also

high in this model. If the requirements are

misinterpreted in the starting then project

have to be started all over again. Big Bang

model is a viewpoint to Software

development and is suitable for small or

academic projects [16]. In Big-Bang

approach, the entire software is delivered in

one shot at the end [17].

2.7 Agile Model

Agile modelling is a method to create

models and documentation of software

systems based on best practices. This model

breaks the product in to cycles. Agile model

delivers working product and considers a

pragmatic development approach. This

modelling produce system with proceeding

releases with iterative changes from the

previous release. With each iteration,

product is evaluated. In this model

customers, developers and testers work

together. Therefore, it gives stress on

interaction. The project can go in wrong

direction if the customer is unclear about

the way customer wants to go.

3. Conclusion

This paper gives an overview about

software development lifecycle. Software

engineers helps in developing different

kinds of software and provide proof to

validate these results. This paper basically

covers software development life cycle

models. It gives a detailed insight of all the

models such as Classical waterfall model,

Incremental model, Prototype model, V-

Shaped model, Spiral model, Big-Bang

model and Agile model. SDLC is a

procedure used for designing, developing

and testing software. SDLC helps in

providing best quality software which

meets customer’s expectations and ensures

the timely delivery of the project.

References

[1] Liu, Y., Lin, J., Cleland-Huang, J.,

Vierhauser, M., Guo, J., & Lohar, S. (2020,

September). SENET: A Semantic Web for

Supporting Automation of Software

Engineering Tasks, IEEE Seventh

International Workshop on Artificial

Intelligence for Requirements Engineering

(AIRE), pp. 23-32.

[2] Bhatia, M. P. S., Kumar, A., Beniwal,

R., & Malik, T, Ontology driven software

development for automatic detection and

updation of software requirement

specifications. Journal of Discrete

Mathematical Sciences and

Cryptography,2020, vol. 23, no.1, pp. 197-

208.

[3] Sommerville, Ian. "1.1. 2 What is

software engineering?." Software

Engineering, 8th ed., Harlow, England:

Pearson Education, 2007.

[4] Mahoney, Michael S. "The roots of

software engineering." CWI Quarterly 3.4

(1990), pp. 325-334.

[5] Boehm, Barry W. "Software

engineering economics." IEEE transactions

on Software Engineering vol. 1, pp. 4-21,

1984

[6] Salah, Akram I. "Engineering an

Academic Program in Software

Engineering." In 35th Annual Midwest

Instruction and Computing Symposium.

2002.

[7] Mills, H.D., Newman, J.R. and Engle,

C.B., An undergraduate curriculum in

software engineering. In SEI Conference on

Software Engineering Education, (pp. 24-

37), Springer, 1990.

[8] Barbara Kitchenham, O. Pearl Brereton,

David Budgen, Mark Turner, John Bailey

and Stephen Linkman, “Systematic

literature reviews in software engineering”

– A systematic literature review,

Information and Software Technology, Vol.

51, Issue 1, Pp. 7-15, 2009.

[9] Royce, W. W. , Managing the

development of large software systems,

proceedings of IEEE, WESCON, pp. 328-

388, 1970.

[10] Rerych, Markus. "Wasserfallmodell>

Entstehungs context." Institut für

Gestaltungs-und Wirkungsforschung, TU-

Wien. Accessed on line November 28

(2007).

[11] Bell, Thomas E., and Thomas A.

Thayer. "Software requirements: Are they

really a problem?.", Proceedings of the 2nd

international conference on Software

engineering, pp. 61-68, 1976.

[12] Pressman, Roger S. Software

engineering: a practitioner's approach.

Palgrave macmillan, 2005.

[13] Pressman, Roger S. Software

engineering: a practitioner's approach.

Palgrave macmillan, 2005.

[14] Gschwind, Michael, Valentina

Salapura, and Dietmar Maurer. "FPGA

prototyping of a RISC processor core for

embedded applications.", IEEE

Transactions on Very Large Scale

Integration (VLSI) Systems Vol. 9, no. 2,

pp. 241-250, 2001.

[15] Boehm, Barry. "A spiral model of

software development and enhancement."

ACM SIGSOFT Software engineering

notes, vol. 11, no. 4, pp.14-24, 1996.

[16] Ali, Kazim. "A Study of Software

Development Life Cycle Process Models."

International Journal of Advanced

Research in Computer Science, Vol. 8, no.

1, 2017.

[17] Kumar, Naresh, A. S. Zadgaonkar, and

Abhinav Shukla. "Evolving a new software

development life cycle model SDLC-2013

with client satisfaction", International

Journal of Soft Computing and Engineering

(IJSCE), vol. 3, no. 1, pp. 2231-2307, 2013.

