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Bayesian ranking based drug-target relationship prediction has achieved good results, 

but it ignores the relationship between drugs of the same target, which affects the 

accuracy. Aiming at this problem, a new method is proposed—drug-target relationship 

prediction based on grouped Bayesian ranking. According to the reality that the drugs 

interacting with a specific target have similarities, a grouping strategy is introduced to 

make these similar drugs interact. A theoretical model based on the grouping strategy 

is derived. The method is compared with five typical methods on five publicly 

available datasets and produces results superior to the compared methods.   
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1. Introduction  

Computer-aided drug design is an 

interdisciplinary field of study that 

includes studies in biology, chemistry, 

physics, and informatics, to accelerate the 

drug discovery process. The key to drug 

development is to determine whether there 

is an interactive relationship (Drug-Target 

Interaction, DTI) between the drug and the 

target. Although it is possible to determine 

the presence of drug-target interactions in 

vitro and in vivo [1], these methods are 

time-consuming and expensive [2]. 

Therefore, computer technology can 

predict possible DTIs, and drugs can be 

screened through experiments [3], which 

may effectively lower the price of 

https://jesm.in/archives/


releasing new drugs to the market [4]. 

Currently, docking simulation and 

machine learning are the two primary 

categories of computer prediction DTI 

approaches. The docking simulation 

method [5] uses the 3D structure of the 

target to identify whether there is a 

potential binding site for the drug. Still, it 

is very time-consuming and requires the 

3D design of the target, and not all marks 

have 3D structures. Recent study [6] 

reveals that the machine learning-based 

scoring algorithms may be replaced by 

traditional molecular docking scoring 

methods with better prediction outcomes. 

Machine learning approaches typically 

exploit the features of the drug and target 

structure [7], the side effects of the drug 

[8], and knowledge of the confirmed DTIs 

[9]. The quick advancement of machine 

learning technology in recent years has 

made it possible to predict DTI with high 

accuracy. The machine learning-based 

techniques may be loosely categorized as 

classification, matrix factorization, kernel 

methods, and network inference 

techniques. Support Vector Machine 

(SVM) is a classification method that has 

been used by Literature [10] and Literature 

[11] to predict DTI. Dual Kernelized 

Bayesian Matrix Factorization (KBMF2K) 

[12] and Multiple Similarity Collaborative 

Matrix Factorization (MSCMF) [13] are 

classical methods of matrix factorization. 

Kernel methods mainly include the drug-

target kernel method (PKM) [14], network 

Laplacian regularized least squares method 

(NetLapRLS) [15], and regularized Least 

Squares with Kromecker Product Kernel 

(RLS-Kron) [16]. Literature [17] 

established a bipartite local model & 

learned the drug-target interaction 

network, a typical network inference 

method. However, none of these basic 

methods can predict new drugs or targets. 

Literature [18] and Literature [19] address 

this problem by interacting with neighbour 

information to expect new medicines or 

marks. The above-mentioned methods 

focus on predicting the probability of the 

presence or absence of interactions for all 

unknown drug-target pairs, resulting in 

high time complexity. To reduce the time 

complexity, literature [20] proposed a new 

idea to focus on drug-centered research 

and rank the interacting targets of specific 

drugs, respectively. Targets ranked higher 

are most likely to interact with that drug, 

and unknown targets are individually 

identified for each drug based on the 

predicted interaction probability. They 

used Bayesian Personalized Ranking 

Matrix Factorization (BPR-MF) to predict 

DTI, called Bayesian Ranking (BR). 

Although BR shows promising results, its 

major limitation is that all drugs are 

independent and cannot cause some 

similar medicines to interacting. 

According to the fact that there is a 

similarity between drugs that interact with 

a specific target, to make these similar 

drugs interact, this paper groups these 

similar drugs and derives a theoretical 

model of grouping Bayesian ranking. 

Finally, it is verified by experiments that 

its performance is improved.   

2. Principles and Related Work 

2.1 Principle 

Five published drug-target interaction 

datasets, namely, nuclear receptors (NRs), 

G protein-coupled receptors (GPCRs), ion 

channels (ICs), enzymes (E), and kinases 

(Kinase), are used in this paper. Table 1 

presents the statistics for each dataset. 

Each dataset contains three matrices: (1) 

drug-target interaction matrix; (2) drug 

similarity matrix; (3) target similarity 

matrix. There are several approaches to 

compute drug & target similarity. In this 

study, the target and drug similarity, 

respectively, are determined using the 



same technique as mentioned in the 

comparison method, with the target 

similarity being estimated using a 

sequence alignment approach, namely 

Smith-Waterman algorithm. The drug 

similarity is calculated by the 2D 

Tanimoto coefficient in the Kinase dataset, 

and the SIMCOMP [21] method is used 

for the rest datasets.  

Table 1. Dataset Statistics 

Data set No. 

of 

drugs 

No. of 

targets 

Total No. 

of known 

interactions 

Total No. 

of recently 

validated 

interactions 

Enzyme 444 665 2927 503 

ion 

channel 

211 205 1477 1368 

GPCRs 224 96 636 619 

Nuclear 

receptor 

55 27 91 28 

Kinase 1422 157 2799 — 

 

2.2 Basic Symbols and Problem 

Description 

This paper assumes that there are m drugs 

and n targets, D denotes the set of 

medicines, and T denotes the set of marks. 

A binary matrix y∈R
m×n

is used to show the 

relationship of interaction between the 

therapy and the target, each element 

yij∈{0,1}. If the drug is validated 

experimentally against the target and there 

is an interaction, then set to 1; otherwise, 

set to 0. Define a new drug set    

*   ∑             
 
   +and a new 

target set   *   ∑            
 
   

 +. The drug similarity matrix is denoted 

by S
D∈R

m×m
, and the target similarity 

matrix is denoted by S
T∈R

n×n
. The purpose 

of matrix factorization is to map the drug 

and target into a common latent space. 

Here, ui∈R
f
 denotes the drug id latent 

factor, and vj∈R
f
 denotes the potential 

factor of target tj, f denotes the number of 

latent factors. Consider U ∈R
m×f

 and 

V∈R
n×f
                                  

                                       

                                          ij 

of the interaction between di and tj    

             ij = ui ×  
      Ŷ = UV

T
 can 

represent the final predicted drug-target 

                   Ŷ                       

each drug is further defined as a triple 

training set Ds⊂ D×T×T, where Ds={(di, tj, 

tk)|rij= 1 ∧rik = 0}. In this paper, a drug-

centric re-localization approach predicts 

DTI. The main goal is to rank all targets 

for any drug d ∈ D, with the top-ranked 

target having the highest likelihood of 

interacting with drug d. 

2.3 Bayesian Ranking Method 

The Bayesian ranking method is based on 

the three major assumptions of the BPR-

MF algorithm [20]. The following are 

three significant assumptions on which the 

BPR-MF algorithm is based: 

(1) The interaction behaviour between 

drug & target is independent. 

(2) The drug's & the target's feature 

matrices both adhere to a Gaussian 

distribution with a mean value of 0 

and a constant variance. 



(3) The error between the predicted & 

actual value, respectively, of the 

drug-target interaction relationship 

matrix must satisfy a Gaussian 

distribution with a mean of 0 and a 

constant variance. 

This paper adopts the combined method of 

Bayesian sorting and matrix factorization, 

denoted as BPR-MF, based on three basic 

assumptions. Firstly, a corresponding 

probability model is established based on 

these assumptions, and then the Bayesian 

formula is used to maximize the posterior 

probability, and the related optimization 

criterion is established. Finally, it is solved 

to obtain the corresponding drug & target 

feature matrix, and then the drug target is 

reconstructed—relational networks for 

prediction of unknown drug-target 

relationships. 

For each drug, to find all of its correct 

target rankings as much as possible, the 

posterior probability must be maximized 

by the Bayesian formula as follows: 

 (Θ|≻d) ∝ p(≻d|Θ)  (Θ)  (1) 

A           Θ                           

factorization. Based on assumption (1), the 

probability function p(≻d|Θ)               

drug can be obtained by the following: 

∏  (≻   )    ∈  ∏  (  ≻     )(        ) ∈         (2) 

The following formula determines if a 

drug's likelihood of interacting with the 

target tj is higher than its likelihood of 

interacting with the target tk: 

p(tj≻dtk|Θ) =  (  djk (Θ))  (3) 

A            ( ) = 1/(1+ 
-x
)       djk (Θ) 

is the evaluation function that represents 

the relationship among drug d, target tj, 

and target tk                              djk 

                djk =   dj -   dk; the model 

          Θ                                 

          : Θ = (U V). Based on 

assumption (2), the prior probability 

                               Θ    

                                 :  (Θ)~N 

(0 λθI)  w     λθ refers to model-specific 

regularization parameter. Therefore, the 

objective function f can be deduced by the 

Bayesian ranking method as follows: 

  =     (Θ|≻d) = ln p(≻d|Θ)  (Θ) =   

∏  (  ≻     )(        ) ∈  
 (Θ) 

=∑     (      ( ))       ( ) (        ) ∈  
 

=∑     ( ̂   ( ))         
 

(        ) ∈  
 

= ∑    ( ̂    ̂  )  (         ) ∈  

  (     
        )   (4) 

 

2.4 Advantages of Bayesian Ranking 

Method 

A core step of the Bayesian ranking 

method is constructing a new training set. 

The difference is that the training sample 

here is not a drug-target pair but a triple 

consisting of a drug and a target, denoted 

here as (d,ti ,tj), where the drug d interacts 



with the target ti, but the interaction with 

the target tj is unknown. The Bayesian 

ranking method uses triples as a new 

training set. Compared with traditional 

methods, it is no longer necessary to 

predict whether there is an interactive 

relationship between all unknown drug-

target pairs, but only for the targets that 

interact with specific drugs. The higher the 

target ranking, the more likely it is to 

interact with the medicine. The unknown 

target is determined for each drug as per 

the predicted interaction probability, which 

can significantly reduce the time 

complexity.  

3. Grouping Bayesian Sorting 

Method 

In this part, two new definitions are 

described first, and then new assumptions 

and the basis for their establishment are 

proposed. Finally, a theoretical model of 

Group Bayesian Ranking (GBR) is derived 

based on the new assumptions to smooth 

new drugs and targets. 

3.1 Grouping Idea 

Definition 1 (Individual interaction): An 

individual exchange is the probability of 

interaction between drug id& target tj. For 

example, the probability of interaction 

between drug id& target tj                 ij. 

Definition 2 (Group interactions): A group 

interaction is the set of drugs that interact 

with a specific target and the probability of 

that target interacting. For example, the 

probability of interaction among a drug set 

G and a target tj is referred to as      

 

   
∑       ∈ 

. Where G ⊆   
  ,   

   represents 

the ensemble set of drugs known to 

interact with the target Tj. 

New hypothesis: If the drug-target pair (di, 

tj) is known to have an interactive 

relationship, and whether the drug-target 

pair (di, tk) interacts is unknown, the new 

hypothesis proposed in this paper is 

expressed by the following formula 

express: 

(G,tj) ≻ (di,tk )    (5) 

Where G ⊆    
   and di∈ G. New 

hypotheses can be introduced more 

intuitively through Figure 1. Drugs d1, d2, 

d3 are known to interact with target t1, but 

it is unknown whether drug d1 interacts 

with target t2  A                       1  

  11    21        31                        12, 

so
              

 
≻  12                        G1≻ 

  12 , and a new hypothesis is obtained: 

(G,t1) ≻ (d1,t2), where G = {d1,d2,d3}. 

 

Figure 1. Drug-target Interaction Diagram 

The implementation steps of the grouped 

Bayesian sorting method are shown in 

Algorithm 1. 

Algorithm 1: Grouping Bayesian Sorting 

Method 



Inputs: Interaction matrix Y; Similarity 

matrix S
D
,S

T
; Size of the drug (or target) 

neighbour k 

O     : U                          Ŷ 

Step 1: Initialize U,V,b 

Step 2: Change S
D
,S

T
 to include only the 

top k nearest neighbours of each item 

Step 3: Make each drug-target pair (di,tj) 

such that rij = 1 

Step 4: Randomly select the target tk so 

that rik = 0 

Step 5: Randomize the drugs that interact 

with the specific target tj so that the group 

size |G|=1,2,3,4,5 

Step 6: Update bj ,bk , ui , vj , vk 

Step 7: Go back to step 3 until a 

predetermined or max number of iterations 

has been attained 

3.2 Establishment of the New 

Hypothesis 

This paper makes reasonable assumptions 

based on the following two aspects of 

information: 

1) For the target: if the drug interacts with 

the target Tj, other drugs can also 

interact with the target tj. The 

probability of interaction between drug 

id& target tj is greater than the 

probability of interaction with the 

target tk. So (G,tj) ≻di can be used 

instead of (di,tj)≻(di,tk). 

2) For drugs: It is natural to introduce 

interactions among all medicines that 

interact with a specific target Tj, 

because these drugs are in a similar 

relationship. The drug groups G ⊆   
   

share a common similarity and they all 

interact with the target tj. 

3.3 Theoretical Model 

To study the different degrees of influence 

of individual interactions and group 

interaction on the prediction results more 

precisely, they are combined linearly: 

(G,tj) + (di,tj) ≻ (di,tk )      Gij≻  ik   (6) 

w      Gij =    Gj + (1 -  )  ij  0 ≤   ≤ 1        

trade-off parameter for fusing two 

different interactions, which can be 

determined by testing the validation set. 

Based on BR, th                     

            ij w      Gij, each drug has a new 

target ordering, called grouped Bayesian 

arrangement. Therefore, the final grouped 

Bayesian ranking method objective 

function is as follows: 

  ∑    (         (       ))  (        )∈  

  (     
                  )               (7) 

Where bj and bk are the biases of targets tj 

and tk, b is the bias of all marks, and CA is 

the regularization term for the latent factor 

distance. Assuming a triple (di, tj, tk) ∈ Ds 

in the training set, CA can be expressed by 

the following formula: 



     (∑     ̅
 |      ̅ |

  
  ̅  ∑     ̅

 ||   
 
 ̅  

  ̅||
 

     ̅
 ||     ̅||

 

)                                 (8) 

This paper optimizes the objective 

function f using extended stochastic 

gradient descent (SGD) with model 

           Θ            i, vj, vk, bj, and 

bk. First, the gradient of the parameters in 

the objective function needs to be 

calculated, and then according to the 

respective gradient, the model parameters 

are updated as in Equation 9: 

Θ = Θ + η
   

  
    (9) 

3.4 Smooth New Drugs and New Targets 

This section utilizes neighbour information 

to anticipate interactions between new 

drugs and new targets. Bayesian ranking 

technique cannot predict new drugs & 

targets and can learn their underlying 

factors only via negative examples 

(unknown DTI), which may damage the 

whole model. In order to identify possible 

variables of unknown medications or 

unknown targets, this research uses 

neighbourhood information based on the 

concept of collaborative filtering [22]. 

{
 
 

 
    

 

∑     ̅
 

 ̅∈  (  )

∑     ̅
   ̅ ̅  

   
 

∑     ̅
 

 ̅∈  (  )

∑     ̅
   ̅ ̅  

   
 

∑     ̅
 

 ̅∈  (  )

∑     ̅
   ̅ ̅  

  (10) 

Among them, N
+
(di) and N

+
(tj) are the set 

of k nearest neighbors of known drug & 

targets, respectively. During the 

experiments, k = 5 so that the model is 

simplified. 

4. Experiment and Result Analysis 

This paper uses the area under the ROC 

curve (AUC), the normalized discounted 

cumulative gain [8] (nDCG), and the Mean 

average precision (MAP) as evaluation 

indicators. AUC and MAP values are used 

as evaluation indicators in almost all drug-

target relationship predictions. In contrast, 

the nDCG value is an evaluation indicator 

only proposed in the recent literature [8], 

which has a great reference value, so it is 

included in the evaluation in this paper. 

Using hierarchical correlation features, 

nDCG can distinguish DTI predictions 

with higher potential impact. nDCG only 

considers the impact of the top k objects 

on DTI prediction by natural truncation, 

ignoring the small impact of unimportant 

things and reducing the time complexity. 

4.1 Experimental Setup and 

Comparison Methods 

To be comparable with previous research 

methods [15, 18, 20], this paper adopts 

five 10-fold cross-validations (CV) 

experiments to analyze the performance of 

the GBR prediction method. And compare 

the technique with 5 typical DTI prediction 



methods, such as Gaussian kernel-based 

Weighted Nearest Neighbor [11]  (WNN-

GIP), Cooperative Matrix Factorization 

[13](CMF), Network Laplacian 

Regularization Least Squares 

[15](NetLapRLS), Bipartite Local Model 

with Nearest Neighbor Information 

[18](BLM-NII) and Bayesian Ranking 

Method [20](BR). During 

experimentation, the average of each 

cross-validation were calculated and ran it 

5 times repeatedly, randomly dividing the 

known DTI into 10 parts to get a final 

AUC value. And use the same method to 

calculate the nDCG value and MAP 

values. 

4.2 Parameter Setting 

Theoretically, finding that the more 

         ’      k                    etter 

the performance is not complex. Still, 

when the number of neighbours increases 

to a specific value, the performance 

improvement is not apparent. The time 

complexity will continue to grow, 

resulting in the algorithm's low efficiency. 

For example, in drug-target relationship 

prediction, as the group size |G| value 

increases, the performance improves, but 

the time complexity increases 

exponentially. When |G| = 1, the improved 

method is the BR method, so selecting the 

appropriate k value and |G| value is 

essential. To deeply understand the impact 

of selecting the number of neighbours and 

group size on the GBR method, the 

parameter adjustment range is set to 

k∈{3,5,8,15,20,30} and |G|∈{1,2,3,4,5} 

select the appropriate k value and |G| value 

through experiments. As observed from 

Table 2 and Figure 2, when the number of 

neighbours k >8, the performance 

improvement is not much apparent. As 

observed from Table 3 and Figure 3, when 

the packet size |G| is greater than 3, the 

nDCG improvement is significantly 

reduced, and some even decrease. 

Table 2. Data w.r.t. influence of the 

number of neighbours 

Algorithm k=3 k=5 k=8 k=15 k=20 k=30 

NR 0.935 0.942 0.945 0.944 0.946 0.947 

GPCR 0.926 0.928 0.936 0.934 0.935 0.937 

IC 0.949 0.957 0.959 0.96 0.96 0.961 

E 0.89 0.896 0.899 0.902 0.9 0.899 

K 0.924 0.926 0.927 0.927 0.928 0.928 

 

 

Figure 2. Influence of the number 

of neighbours 
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Table 3. Data w.r.t. effect of group 

size 

Algorithm |G|=1 |G|=2 |G|=3 |G|=4 |G|=5 

NR 0.922 0.926 0.933 0.934 0.935 

GPCR 0.928 0.931 0.937 0.938 0.942 

IC 0.945 0.954 0.962 0.965 0.967 

E 0.896 0.9 0.908 0.905 0.91 

K 0.92 0.921 0.926 0.927 0.925 

 

 

Figure 3. Effect of group size 

5. Conclusion 

This paper considers the effect of grouping 

interactions on the Bayesian ranking 

method. First, according to the reality that 

drugs interacting with a specific target 

have similarities, these similar drugs are 

grouped to obtain a grouped drug set. Then 

new hypotheses are proposed according to 

the grouped drug set, and the theoretical 

model of grouped Bayesian ranking is 

deduced based on the new ideas. Finally, 

the paper also incorporates neighbour 

information to smooth the prediction of 

new drugs and targets. The corresponding 

experiments prove that this paper's method 

outperforms the typical performance 

techniques. Future work plans to develop a 

new way for similar grouping targets to 

improve performance further. 
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